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(ABSTRACT)

UNEQUAL CELL FREQUENCIES IN ANALYSIS OF VARIANCE:

A REVIEW AND EXTENSION OF METHODOLOGY FOR MULTIPLE MISSING

OBSERVATIONS

Many researchers assume that unequal cell frequencies,in analysis

of variance (ANOVA) designs result from poor planning. However, there are

several valid reasons why one might have to analyze an Unequal-n data matrix.

The present study reviewed four categories of methods for treating unequal-n

matrices by ANOVA: (a) unaltered data (least-squares solution and unweighted

means solution); (b) data substitution (grand mean method, cell mean method,

Winer method, Snedecor-Cochran method); (c) data deletion, and (d) data

clustering,(unreplicated.cell mean method, unreplicated random data cluster-

ing method, replicated random data clustering method). The methods were

compared empirically and theoretiCal problems with each were discussed.
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(COMPLETE TEXT)

UNEQUAL CELL FREQUENCIES IN

ANALYSIS OF VARIANCE: A

REVIEW AND EXTENSION OF METHODOLOGY

FOR MULTIPLE MISSING OBSERVATIONS1

Intr^4,,,-finn

The majority of experimental studies in educational research that concern

the analysis of variance (ANOVA) contain equal cell frequencies. Since most

of these investigations are completed in tightly controlled university settings

or laboratory situations, it is almost always possible to ensure that sufficient

Ss are available to produce an equal-n data matrix in a factorial ANOVA design.

Thus, it is not surprising that most commonly used texts in educational sta-

tistics discuss only the equal-n, factorial ANOVA solution. Further, many

applied statisticians take the attitude that a researcher has done poor pre-

experiment planning if he allows himself to get into an unequal-n circumstance;

one is even made to feel guilty about it
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2.

Unfortunately, these equal-n biases of the majority of educational

statisticians do little for the researchers in large public school sit-

uations where unequal-n ANOVA problems are the rule rather than the ex-

ception. Apart from possible lack of adequate planning for the experiment,

what are some common reasons for unequal n's to arise in the factorial

design? One important reason is inherent dearth of some types of Ss; this

consideration is especially prominent in the study of various handicapped

.popUlations. If one wants to include such types of Ss in his study, he

either must balance them with a like number (pitifully small) of other

groups .for his study, or he must Settle for an unequal-n design.. A

second reason might be inadvertent experimental mortality (attrition)

over the course of the experiment, where one would not for some reason

have enough supplementary Ss to substitute for the missing ones in the

data matrix. A third reason could be forced experimental mortality during

the study when the investigator learns that some of his Ss who had pre-

viously been identified as being appropriate to the study, really are not

suitable; thus, rather than discard the whole study, the experimenter an-

alyzes his remaining unequal -n matrix. However, whatever the reasons for

attempting to analyze an unequal-n data natrix, the range of methods for

treating such matrices are relatively unfamiliar to most researchers. The

purpose of this paper is to survey existing methods of both common and out-

of-the-way nature, as well as to introduce some previously unpublished

techniques.

PROCEDURE

Data:

To facilitate discussion of the methods described herein and to provide
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readers with a means of verifying the accuracy of their understanding of

the analytical techrigees, an empirical compa-ison of all procedures was

undertaken by means of one master data matrix for a 3x3 design. Winer

(1962) made an initial step in this direction when he used empirical com-

parisons between least-squares and unweighted-means ANOVA; the present

study extends the empirical comparison notion by also including 7 other

unequal-n techniques, as well as the original equal-n solution. Table I

shows an equal-n matrix where the hypothetical investigator intended 15

Insert Table I about here

independent observations to be contained in each cell. The matrix reflects

A typical unequal-n situation often occurring in the remediation of mentally

handicapped children where one applies treatments (Factor B). In particular,

the hypothetical example assumes that 3 perceptual-motor training programs

(the worst being Al, A2average, and A3 best) were given to 3 levels of in-

telligence (the range of B1 being 91-105; B2, 76-90;. B3, 61-75). The

terion is assumed to be the visual sequential memory subtest of the Illinois

Test of Psycholinguistic Abilities (ITPA), with a possible score range of

0 to 41. The 3s are assumed to be of chronological age 6 to 8 years. The

data generation for this empirical simulation was aimed at producing quite

strong main effects for factors A and B but quite negligible interaction

between the two. Further, to achieve the common happening in which, regardless

of mean differences among factorial levels, score ranges across cell categories

often overlap to a certain extent, the ITPA scores were allowed to telescope

as shown in Table 2. The degree of overlap is consistent across levels within
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Insert Table 2 about here

either factor. The individual scores in each cell of Table 1 were generated

by 9 independent randomizations based upon the range limits set in Table 2

(Rand Corporation, 1955). The corplete 10/cell-h matrixwas used only as a

pivot for discussion in comparing the several unequal-n procedures. Each

unequal-n analysis was computed on the;data matrix that results from Table 1

when the italicized entries were deleted. For the unequal-n matrix derived

from Table I, one sees that the cell frequencies range from 10 to 15, with no

proportionality amongrows or columns assumed; that is, the unequal-n matrix

in this study is the "worst" that could arise with respect to the orthogonality

issue.

Analyses: Since the majority of unequal-n techniques are not available

in programmed form, all computations were completed by electronic calculator,

with systematic checking to ensure accuracy. A total of 10 unequal-n proce-

dures were compared in this study. A procedu're is described at length only

if it is not available elsewhere. The 10 methods can be grouped under four

major headings.

(1) UNALTERED DATA: The two unequal-n techniques that fall under this

heading are also the most widely known, used, and programmed approaches out

of the 10 discussed in this paper. The two methods are known as least-

squares analysis and unweighted-means analysis. As pointed out by Winer (1962),

in cases where the levels of one factor are proportional to actual population

strata so that irregular cell frequencies result naturally, then least-

sqUares ANOVA is appropriate. However, if unequal frequencies in the resultant

working sample are not related to'the population in a natural proportionality

(that is, unequal cell frequencies might be the result of random attrition),

then unweighted-means ANOVA is better suited to unequal cell frequencies.
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Perhaps the best account of least-squares ANOVA is given by Winer (1962,

pp. 224-227, 291-297). Other readable accounts can be found in Snedecor

Cochran (1967, pp. 477- 83, 488-493) and in Ferguson (1966, pp.' 319-323). For

those particularly interested in trend ANOVA, one should consult Gaito (1965),

Black & Davis (1966), and Ferguson (1966, pp. 343-346). For further reading,

see Kempthorne (1952, pp.80-81), Rao (1952, pp. 96-98), Gourlay (1955),

Snedecor (1956), Kenney & Keeping (1954), Wilk & Kempthorne (1956), Brandt

(1932), Strand & Jessen (1943), Yates (1934), Stevens (1948), and Federer &

Zelen (1966).

.
When circumstances. behind an unaqual-n data matrix indicate thatun-

weighted-means ANGVA is appropriate, one can refer to the examples given in

Winer (1962, pp. 103-104, 222-224, 241-244, 374-378) and Sw..decor & Cochran

(1967, pp. 475-477). For further reading, see Gowen (1952).

(2) DATA SUBSTITUTION: Four methods are worthy of consideration: (a)

substitution of the grand mean, (b) substitution of the cell mean, (c) substi-

tution alb Winer, and (d) substitution all Snedecor Cochran. All four pro-

cedures have in common the attempt to add bits of .data to the original un-

equal-n matrix until it. becomes, literally, an equaln paradigm amenable to

classical ANOVA. The only modifications that must be made to the classical

statistical machinery is, logically enough, to adjust the degrees of freedom

for both within-cells variation and total variance.

For the grand mean method, the mean of the entire unequal-n alatrix is

computed and substituted for each bit of missing data. For the cell mean

method, wherever a cell has one or more missing values, the mean of that

cell' is compdted and substituted for each missing score within that cell.
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The substitution method of Winer (1962, p. 281) was designed for

situations in which an entire cell is missing! However, in most real-

life unequal-n matrices, one almost always has some data within every cell.

Thus, the logical extension of Winer's method in which one obtains row

(and column) means of the cell means within the row (and column) that con-

tains the missing cell, is to obtain comparable row (and column) means

.using every individual child's score (including the scores in the deficient

cell).

Further discussions of data substitution can be found in Cochran and

Cox (1957, pp. 80, 110, 125, 227, 302, 400, 413, 450, 512), Healy and West-

macott (1956), Lindquist (1953, p. 148), Afifi and Elashbff (1966), Lord

(1955), Federer (1955, pp. 124 -127, 133-134),and Bennett and Franklin (1954,

pp. 382-383). Snedecor and Cochran (1967,..pp. 320-321) and Li (1964, pp.

231-236-237) present a very interesting iterative procedure for supplying

two or more missing values in the data matrix. Basically, one chooses any

one of the two or more missing values, estimates a reasonable value, and makes

the substitution. The other missing value is estimated with a least-squares

formula as though th?.re were only one value missing. Then one goes back and

estimates the first value on the basis of the second one and so on, back

and forth, until the values change only by very small amounts. Degrees of

freedom are again adjusted for total sum of squares and error sum of squares
3

after stabilization has occurred. For exact least-squares methods of data

substitution, see Li (1964, pp. 227-243). Winer (1962, pp. 281-283) also pro-

vides a method that minimizes the interaction effects. Another basic refer-

ende with examples is Snede6or and Cochran (1967, pp. 317-321). Finally,

6.
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Examples of data substitution can be readily found in special education

research (e.g., Bloom, 1967; Prehm, 1967; Halpern, Mathieu, & Butler, 1968).

(3) DATA DELETION: Another major attempt to form an equal-n matrix

from an originally unequal-n paradigm is to use random deletion of cell

entries. One looks at the n of the smallest cell and.accordingly "prunes"

all other cells down to that size. independent runs through tables of

random numbers are used to accomplish an.unbiased deletion in the "oversized"

cells.

Closely related to the topic of random deletionof observations is the

systematic deletion of-highly discrepant observations. Snedecor and Cochran

(1967, pp. 321-323) present a very enlightening discussion on the rejection

of extreme observations. Most rejection methods are based on tests of sig-

nificance of residuals of observations from expected values. Edwards (1960,:

pp. 166-168) also describes a method for rejection of discrepant observations

on the basis of confidence intervals. Mainland (1968), on the other hand,

takes opposition to all methods of rejecting okservations; the reader is ad-

vised to examine Mainland's notes before employing test-of-significance

methods. For further"reading, see Anscombe (1960), Anscombe and Tudey (1963),

Li (1964, pp. 239-240), and Searls (1963). Some interesting examples of

data deletion in applied situations are Shubert, Jansen, & Fulton (1967) and

Dawson (1967).

(4) DATA CLUSTERING: In line with the philosophy of the attempts of

data deletion and data substitution to form equal-n matrices out of unequal-n

ones, the data clustering techniques coalesce several observitions within a

cell into fewer observations but with no loss or gain in data. The data
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clustering techniques are without doubt the least known of u,zqual-n

methods; indeed, some of the procedures to be described here have never

been published before.

The only data'clustering technique that has been discussed at all is

ANOVA where cell means become the units of analysis. In data matrices

where all cells have some entries, but cell discrepancies are such as to

.violate the approximately-equal frequency rule, the within-cells variation

is ignored. The highest-order interaction is used as the estimate of error;

however, the assumption must be made that the interaction is negligible. In

effect, the ANOVA is carried out as though single replication were the case.

The hasic mathematical defense of the methad is given by Finney (1960, p. 48)

in terms of differential coefficients of regression functions. The use of

interactions as error teens is discussed by Edwards (1960, p. 210, Ferguson

(1966, pp. 310-311, 314-316), Lindquist (1953, p. 114), and Scheffe (1959,

pp. 247-146). An example of using the highest-order interaction as error is

given by Ling (1968).

A new procedure of random data clustering was devised in late 1968 or

4
early 1969 by J. R. McGowan but never before published. He suggested forming

random clusters of data within each cell of the original unequal-n matrix.

The number of randomly formed clusters is the same as the number of original

entries in the smallest cell. In this sense, the method might be called

unreplicated random data clustering because some of the clusters will never

have more than 1 observation. For example, if the smallest cell has two

entries, then in a cll with seven entries, four data would be randomly

assigned to one cluster and. the remaining three data in that cell would

become the second cluster of the cell. Clearly, the clusters in the smallest



Proger 9.

cell would always contain only one score each. In the example cited, each

cell would contain two clusters, each cluster in turn holding varying numbers

of data. After randomly assigning within a cell all original scores to their

new cluster "identifies", the average of each within-cell cluster is computed.

The resulting matrix of equal-frequency, mean data is subjected to a regular

equal-frequency ANOVA with the new number of averages taken as the number of

data. As fa. as the authors know, McGowan was the first to put forth such a .

method. The technique seems to hold interesting possibilities. It should be

noted that if the smallest cell has only one original observation, then the

"random cluster" method becomes merely cell-means ANOVA (single replication),

mentioned just above. In the present example, ce11 Al 81, is of size 13, while

the smallest size of any cell is 10. One wants 10 clusters per cell. The

only combination of double clusters (those with 2 scores) and single clusters

(those with only 1 score) that yield a total of 10 clusters and still use all

13 individual scores, is 3 doubles and 7 singles. To determine which obser-

vations within all Al B1 go into which of the double and single clusters, the

cluster numbers (labels) of 0 to 9 are assigned from a table of random numbers

to the observations in the order that the latter are listed within the unequal-n

data matrix. Once a digit occurs the second time, it cannot be used again.

Further, since one wants only 3 double clusters, only 3 of the digits can be al-

lowed to occur the second time. The averages of all double clusters are com-

puted and, along with the single' clusters of the original observations, are

entered into a new equal-n matrix upon which the classical ANOVA is finally

computed.

-The last method compared in this study is an extension orthe preceding
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clustering technique and might be termed replir ted random data clustering;

that is, no cluster will ever have fewer than 2 observations. In the present

example where the smallest cell size is 10, one wants to generate 5 clusters in

each cell so that at least 2 observations per cluster result.

RESULTS AND DISCUSSION

The summary ANOVA table for 9 unequal-n methods are presented in Table 3.

While it must be remembered that the results are only an empirical comparison

Insert Table 3 about here

within a limited numerical example, one can draw some conclusions. First, one

needs some basis for comparison before he can suggest that a certain unequal-n

method appears to be a rather poor or good approximation to what would have

been the results of the original equal-n experiment. Since the data in this

illustration were quite carefully selected to reflect pre-specified differences

and to avoid unwanted biases, the complete equal-n solution was available to

serve as the basic "control" analysis. One can see the strength of the two

main effects, the negligibility of the interaction, and the relatively small

within-cells variation. Because the equal-n solution would normally be un-

available, the exact least-squares ANOVA is perhaps the most appropriate

"control" for all other unequal-n methods to be compared with. Even though

the random attrition of the hypothetical example would dictate the unweighted-

means solution, least-squares ANOVA is a better approximation.

The most discrepant set of results occurs in connection with data sub-

stitution by the grand-mean. Where there should have been a quite negligible

interaction, a significant one emerged. On the other hand, substitution by
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cell means is a quite accurate approximation of the equal-n results.

When one turns to theoretical considerations of the separate unequal-n

methods, a number of interesting insights are yielded. First, one returns

to the notion that unequal-n designs can be avoided by sound pre-experiment

planning. When one considers an area such as handicapped children (special

education), most research does not yield equal cell frequencies. It is dif-

ficult enough to get equal numbers of, say, educable mentally retarded Ss

for various treatments to be compared on just the factor of treatments it-

self, but even more diffidult to get an equal distribution of sex within the

equi-sized EMR groups under each treatment to produce a factorial design.

Adding morecontrol variables usually leads to even greater fluctuations in

cell frequencies. Thus special education researchers seem more content to

measure differences only amongtreatments in nonfactorial, one-way designs.

When an investigator uses one-way ANOVA, valuable information on interactions

with non-treatment variables (such as sex, age-level, level of previous func-

tioning, class of brain damage, etc.) is lost.

Nonetheless, proper pre-experiment planning should not be dismissed

lightly with regard to avoiding unequal-n data matrices. Consider the case

of a three-way factorial ANOVA design in which the factors are treatments,

sex, and levels of auditory impairment. A control variable such as auditory

impairment that lends itself to a numerical continuum often leads to unequal

cell frequencies when the design paradigm is further subdivided by other

control variables, such as sex. In the present example, during the planning

stages of the experiment, auditory impairment of all potential candidates for

participation in the study is determined. A stratification problem, inherent

in control variables of continuous type, is then posed. The researcher must
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decide whether he want to form control strata on the basis of realistic

special education criteria or on the basis of computational expediency.

On the latter case, equal.cell frequencies can be established no matter

how artificial the cut-off points. Too often both theoretical, and applied

statisticians get side-tracked in trying to establish perfect designs and

avoiding statistically difficult, but perhaps more meaningful and general-

izable, situations. Of course, even if artificial stratification points

have been chosen on the control variable-distributions for achieving equal

cell frequencies, experimental attrition may occur during the experimental

period. For further reading, see Hess, Sethi, & Balakrishnan (1966).

However, even the best of experimental planners cannot avoid every

pot-hole in the road of design. Consequently, statistical methods for

handling unequal frequencies must be considered. 'With regard to the first

category of unequal -n methods (those dealing with unaltered data), Winer

(1962) claims least-squares ANOVA provides more powerful tests of significance

than unweighted-means solutions. It should be cautioned that one basic dif-

ference between least-squares ANOVA and unweighted means ANOVA is that the

variance relation among the total, between, and within components holds only

for the least-squares method. In other words, true orthogonality of variance

components exists only for the least-squares ANOVA. The only apparent dif-

ference between least-squares ANOVA and unweighted means ANOVA is in obtain-

ing a best-fit regression model based on cell means and average frequencies

without response surface regression weighting. Basically, in a least-squares

two-way ANOVA, one solves a set of normal equations analogous to that in

multiple regression. As in covariance analysis, one makes adjustments to the

raw sums of squares. He uses the exact cell, column and total frequencies
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along with cell totals. First, one computes unadjusted row, column, and

cell sums of squares. There are then two options: (a) SS ab(adj.)
can be

computed directly from means of cell means or, (b) one can go through the

unadjusted, exact frequency analysis, computing S .)and SSa
Sb (adj (adj.) by

the abbreviated Doolittle Algorithm or, somewhat easier, by the Dwyer square-

root algorithm, and then obtain S Sab(adj.) by subtraction. To use a

physical analogy, if one pictures different thickness poker chips for dif-

ferent magnitude scores arranged vertically one on top of the other in their

respective cells, the least-squares ANOVA drops'a response surface-blanket

over the stacks of chips naturally, taking into account different frequencies

as well as different sizes of scores. On the other hand, unweighed-means

ANOVA does not throw the blanket down over what exists; rather, it statis-

'tically builds by leveling off the peaks and then fits a uniform unweighted

surface on the situation, taking account only of differences in cell score

averages.

In dealing with least-squares solutions, an important and generally un-

appreciated issue is that of how far the observed frequencies can deviate from

the frequencies expected under proportionality. This question could be at-

tacked by an application of factorial Chi-square analysis. However, since Chi-

square is a test of poor power, its results cannot be relied upon too heavily.

The present authors contend that least-squares and unweighted-means ANOVA are

applied too often in situations where their mathematical appropriateness can-

not be justified. This is especially unfortunate because the tests of ap-

propriateness are themselves rather weak and under-powered. -Under expected

equal frequencies, Snedecor and Cochran (1967) suggest that discrepancies

in cell frequencies should He within a 2 to I ratio, but only if the majority

of cell frequencies are in closer agreement. However, this rule is given
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without any mathematical evidence to support it. Ferguson (1966, pp.

319-323) provides a discussion of ANOVA from the standpoints of Tsao's

(1946) methods for equal and proportional expected frequencies. However;

the reader must be aware of the possibility of bias, both positive and

negative, in F tests when deviations from the expected frequencies are

large. Unfortunately, one has no completely satisfactory method of test-

ing such deviations. Similarly, turning fromeast-squares solutions to

unweighted-means techniques, one worries about how much variation can be

allowed among the unequal-n's relative to the original expected frequen-

cies. The situation is compounded by the fact that one uses the harmonic

mean of:the observed cell frequencies in obtaining sums of squares, rather

than the original frequencies.

The second major set of unequal-n methods deals with substitution of

data to obtain an equal-n matrix. Beginning with the grand mean method,

one might suspect that it would produce a very poor approxiriation to the

original unequal-n matrix, or at worst, to the least-squares unequal-n

solution. The fact that the grand mean probably is not really close to

any specific cell means distorts the original cel; ::eans quite a bit, as

well as increasing within-cells variation.

More pos!tive things can be said about the second technique of data

substitution: insertion of cell means for a cell's missing observations.

First, substitution of cell means does not change the original cell mean.

Second, and perhaps most importantly, the method does not affect the within-

cells variation. Finally, the technique provides a very good approximation

to both the least - squares and equal-n solutions.

The data substitution method of Winer, as modified for purpOses of

this paper, makes use of both main effect means and the grand mean. The

basic structure underlying Winer's technique is both logical and pleasing
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in its ease of application. However, the method suffers from some severe

limitations: (a) it assumes no interactions of any significance; (b)

generalized, "halo" distortion occurs simply because of data from outside

the cell of interest entering into the estimation; and (c) severe distortion

occurs if the cell with missing data lies at either end of a score continu-

um. Winer suggests that a preferable alternative would be to use a multiple

regress:on equation !n connection with the response surface of the experiment.

Both the original Winer. and Snedecor-Cochran substitution methods were

designed for cells that had no data at all in them. While Winer's:method

could be modified to allow any data that might be available within the cell

of interest to enter into the substituted data estimates, the method of

Snedecor and Cochran must remain in its original form and thus could not be

'1::sed in the empirical comparison of this study.

Some final comments on data substitution are in order. In realistic

learning situations where it is likely that experimental mortality will oc-

cur in a one-day study, the investigator might consider running a separate

replication of the primary study so as to have data in reserve for substitu-

tion purposes. It seems statistically more pleasing to substitute real data

than to make elaborate assumptions about the response surface. For example,

if the desired cell size is 5, and if one cell is missing 2 observations for

purposes unrelated to the experiment, then the corresponding data cell from

the reserve replication would be randomly."robbed" of 2 entries. The

cautious researcher would then reduce the degrees of freedom for both the

error and total sums of squares by 2. Of course, in any method of data sub-

stitution, the degrees of freedom for the error sum of squares and the total

sum of squares have to be adjusted accordingly; clearly, the principle of
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diminishing returns applies, since the error mean square becomes larger

in the process.

Both conceptually and practically, data deletion, the third major

category of methods for treating unequal-n data matrices, seems quite weak.

The technique is suitable only when the original cell size expectation is

large. This procedure can be extremely wasteful if cell frequencies are

highly discrepant. A workable compromise is to find the optimum combin-

ations of data substitution and data deletion in order to achieve the

least amount of "synthetic" data in balance with the maximum degrees of.

freedom. Whether or not a subject is to be discarded from analysis is

an issue which only the investigator can decide. However, leaving all

original data present and unmodified seems to be the most defensible course.

Suppose, for example, that a normal pupil refused to cooperate on a test or

was obviously working far below his level. Many analysts would either

discard this data or at least regression-modify it. Clearly, these pro-

cedures violate reality. If normal pupils occasionally behave erratically,

then the analysis should reflect this fact, not .ignore it.

The last group of unequal-n data techniques concern data clustering.

The use of original cell means as the unit of analysis is the only familiar

method of clustering; in other words, one has turned his unequal-n data

matrix into an equal-n, single replication design. There is very little in

the literature about single replication studies where all factors are fixed.

Ferguson (1966, p. 311) discusses this situation briefly. Perhaps one could

reason that, if the highest-order interaction of completely fixed factors

is to be the error term, or at least part of it, then (since this "error" is

not operating in a random fashion) it would comprise a systematic overes-

timate. In this Case, a randomly *operating error term is treated as though
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it is the minimum error that could exist, acid the more systematic the

error tttrm, the greater the inflation. In other words, a non-negligible in-

teraction chosen as an error term can be considered an upper limit to the

error. :At worst, one has conservative tests of his main'effects and other

interactions.

To what extent must the assumptions of homogeneity of variance and

normality be met in the case where cell means are used as the units of

analysis? There is zero variability within each cell. Normality of in-

dividual scores cannot even be considered. Perhaps -these thoughts, along

with the robustness of the F test, make this method of analysis one of

the soundest of all'. However, one should not assume that ANOVA by cell

means is foolproof; Finney (1960, pp. 88-89) considers the procedure

appropos only when the design is "saturated" with say 6 or more.

For further discussions about violation of basic ANOVA assumptions, see

Snedecor and Cochran (1967, pp. 278, 324-325), Scheffe (1959, pp. .360-

364), Edwards (1960, pp. 125-'28, 1

S
32), Box (1953),.Box (1954), and

Lindquist (1953, pp. 72-90).

The other two methods of data clustering (replicated and unreplicated

random data clustering) appear pleasing at first glance because they re-

tain all original bits of the unequal-n data, do not substitute contrived

and distorted data, and yield equal-n's for classical ANOVA to be applied.

Further, the replicated version seemed to offer somewhat greater reli-

ability of individual cluster means than the unreplicated technique. In

spite of these apparent advantages, the empirical comparison demonstrated

that both techniques were poor approximations to the equal-n'and unequal-n

control solutions.
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SUMMARY

This paper has brought together within a single perspective several

distinct methods for handling complicated, unequal-n data matrices in

ANOVA. A discussion of each technique's virtues and problems was pre-

sented. Further, an empirical comparison within a tightly controlled

numerical example was undertaken among the methods. Substitution by

cell means appeared to give the most accurate approximation to the original

equai-n solution, as well as, to the least-squares ufiaqual-n results. How-

ever., in the final analysis, only formal mathematical statistics can

establish the superiority of one method over the other. It is hoped

this paper will give impetus to mathematical. research into the relative

theoretical properties of each technique.

The investigators wish to conclude the review by cautioning the

reader to be thoroughly familiar with the limitations placed upon each

method; none of the techniques presented are "foolproof." No one method

suffices for every unequal-n problem the applied researcher meets from

day to day. Some procedures have more severerestrictions than others.

With some thought, the reader can devise zompletely new techniques, as

well as modifications of those presented in this paper. The field of

unequal-n ANOVA methodology is far from being a "dead" research topic in

applied statistics. It should be noted, however, that some statisticians

. . would disapprove of several of the methods discussed here, if for no

other reasons on philosophical grounds.

In conclusion, it would be nice if the investigators could tell

the readers to use computer programs for all their unequal cell-frequency
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needs. This cannot be done. While several programs do exist, it must

again be emphasized that most are appropriate only for certain situations.

Many of the more refined programs are difficult to use, and several have

such poor documentation of computational procedure that the user does not

know which of the methods surveyed in this review he is: using.



Proger 20.

FOOTNOTES

1

The writing of this paper was jointly supported by Research and Information

Services for Education (RISE) under Title III of the Elementary and Secondary

Education Art of 1965 (OEG -1 -67 -3010- 2696); by Pennsylvania Resources and In-

formation Center for Special Education (PRISE), also under Title III (R-22-H,

48-70-0003-0); and by Montgomery County Intermediate UnitNo. 23. However, the

opinions expressed herein are solely those of the investigators and do not neces-

sarily reflect the position or policy of the supporting agencies. BBP is respon-

sible for the review of literature and for the conceptualization of the different

methods of treating unequal l-n data matrices. JRMcM provided the basic idea behind

-the data-clustering techniques, as well as valuable criticism of the. basic thinking

in this paper. RGT and LM also aided in conceptual criticism. Finally, PAG and

LHC performed the empirical analyses for this study.

2The investigators welcome correspondence relating to this article. Address

all comments to Dr. Barton B. Proger, Director of Evaluation and Dissemination,

Pennsylvania Resources and Information Center for Special Education, 443 South

Gulph Road, King of Prussia, Pennsylvania 19406.'.

3
Some of the mathematical premises behind estimation of missing values by

minimization of residual sum of squares have been discussed by Jaech (1966) and

by Sclove (1972) and have subsequently been commented upon in miscellaneous

"letters to the editor" on pp. 57-58 in The American Statistician for October, 1972.

4
Alass, Peckham, and Sanders (1972) studied violation of basic ANOVA assumptions

(non-independence of errors, non-normality, and heterogeneous variances) for both

equal-n matrices and unequal-n matrices. However, the investigators in that study

were not interested per se in different methods of treating unequal-n data matrices.
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TABLE I

Al A2 A3

.19 22 21

22 20 22. .

14 21 15

18 19 16

22 16 18

23 22 19

27 26 24

24 23 20

22 25 27

19 26 19

28 25 27

30 28 31

32 28 28

32 30 28

25 30 -28.

14 9 13

12 10 15

10 17 17

16 15 12

14 15 16

21 17 21

14 16 .14 .

14 17 20

22 16 16

15 22 20

22 23 25

23 25 24

27 21 26

25 23 21

27 23 23

9 8 6

11 6 9

10 10 6

6 .7 8

5 9 4

16 13 14

14 17 17

15 11 9

10 1.7 9

17 12 14

15 22 15

16 19 14

15 19 20

14 21 21

14 18 21



TABLE 2

Ranges of Test Scores in Hypothetical

Example

Levels of

Factor B

Levels of Factor A

Al A
2

A3

B1

B2

B3

14-22

9-17

4-12

19 -27

14-22

9-17

24-32

19-27

14-22
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